T-odd Asymmetry
 in $W+$ jet events at the LHC

National Central University
 Toshifumi Yamada

in collaboration with

R. Frederix (CERN), K. Hagiwara (KEK) and H. Yokoya (Toyama) Phys. Rev. Lett. 113, 152001 (2014) [arXiv:1407.1016 [hep-ph]]

Contents

1. Introduction

2. T-odd asymmetry in $p p \rightarrow W^{+}+$jet events

3. Simulations for the 8 TeV LHC
4. Summary

Introduction

Absorptive Part of Scattering Amplitude

We study theoretical calculation \& direct measurement

 of the absorptive part ${ }_{\downarrow}$ of a QCD amplitude.Transition operator \hat{T} is given as $\hat{S}=T\left[e^{-i \int d^{4} x \hat{H}_{\text {int }}}\right]=\hat{1}+i \hat{T}$. Unitarity of S-matrix $\hat{S}^{\dagger} \hat{S}=\hat{1}$ gives $-i\left(\hat{T}-\hat{T}^{\dagger}\right)=\hat{T}^{\dagger} \hat{T}$.
Absorptive part of transition amplitude from state " i " to state " f " is defined as
$-i\langle f|\left(\hat{T}-\hat{T}^{\dagger}\right)|i\rangle=\langle f| \hat{T}^{\dagger} \hat{T}|i\rangle=\sum\langle f| \hat{T}^{\dagger}|k\rangle\langle k| \hat{T}|i\rangle \equiv A_{f i}$
summation over complete set of states $\mathcal{H} \rightarrow k \in \mathcal{H}$

c.f. When the initial and final states are the same, we get the optical theorem:

$$
\left.A_{i i}=\operatorname{Im}(\langle i| \hat{T}|i\rangle)=\sum_{k \in \mathcal{H}}|\langle k| \hat{T}| i\right\rangle\left.\right|^{2} \propto \sigma_{\text {tot }}
$$

Measurement of Absorptive Part

Absorptive part can be measured through part of the cross section that is odd under naïve T-reversal, which we call "T-odd asymmetry".
any 3 -momentum $\vec{k} \rightarrow-\vec{k}$, any spin $\sigma \rightarrow-\sigma$, but unlike true T-reversal, the initial and final states are not interchanged:

$$
\left\langle\vec{p}_{j}^{\prime}, \vec{\sigma}^{\prime}{ }_{j}\right| \hat{S}\left|\vec{p}_{i}, \vec{\sigma}_{i}\right\rangle \quad \longrightarrow\left\langle-\vec{p}_{j}^{\prime},-\overrightarrow{\sigma^{\prime}}{ }_{j}\right| \hat{S}\left|-\vec{p}_{i},-\vec{\sigma}_{i}\right\rangle
$$

free particle states
proof:
We denote the naïve-T-reversal of states i, f by \tilde{i}, \tilde{f}, respectively. We find $\left.|\langle\tilde{f}| \hat{T}| \tilde{i}\rangle\left.\right|^{2}-|\langle f| \hat{T}| i\right\rangle\left.\right|^{2} \longleftarrow$ T-odd asymmetry

$$
=\underbrace{\left.\left.\left.(|\langle\tilde{f}| \hat{T}| \tilde{i}\rangle\right|^{2}-|\langle i| \hat{T}| f\right\rangle\left.\right|^{2}\right)}_{\underbrace{}}+2 \operatorname{Im}(\langle f| \hat{T}|i\rangle_{\text {Absorptive part }}^{*} A_{\substack { f i \\
\begin{subarray}{c}{j{ f i \\
\begin{subarray} { c } { j } } \\
{\underbrace{}_{i}}\end{subarray}}+\left|A_{f i}\right|^{2}
$$

Measurement of Absorptive Part

Absorptive part can be measured through part of the cross section that is odd under naïve T-reversal, which we call "T-odd asymmetry".
any 3 -momentum $\vec{k} \rightarrow-\vec{k}$, any spin $\sigma \rightarrow-\sigma$, but unlike true T-reversal, the initial and final states are not interchanged:

$$
\left\langle\vec{p}_{j}^{\prime}, \vec{\sigma}^{\prime}{ }_{j}\right| \hat{S}\left|\vec{p}_{i}, \vec{\sigma}_{i}\right\rangle \quad \longrightarrow\left\langle-\vec{p}_{j}{ }_{j},-\overrightarrow{\sigma^{\prime}}{ }_{j}\right| \hat{S}\left|-\vec{p}_{i},-\vec{\sigma}_{i}\right\rangle
$$

free particle states
proof:
We denote the naïve-T-reversal of states i, f by \tilde{i}, \tilde{f}, respectively. We find $\left.|\langle\tilde{f}| \hat{T}| \tilde{i}\rangle\left.\right|^{2}-|\langle f| \hat{T}| i\right\rangle\left.\right|^{2} \longleftarrow$ T-odd asymmetry

In QCD with $\Theta=0$, the first term is zero, but the second and third terms are significant as hadrons/partons have much chance of rescattering, due to the strongly-coupled nature of QCD.

Observation of T-odd Asymmetry

T-odd asymmetry can be observed through distribution of a quantity that is odd under naïve-T-reversal, such as

$$
\vec{k}_{1} \times \vec{k}_{2} \cdot \vec{k}_{3}, \quad \vec{k}_{1} \times \vec{k}_{2} \cdot \vec{s}
$$

\vec{k}_{i} : 3-momentum
\vec{S} : spin vector
$\vec{k}_{1} \times \vec{k}_{2} \cdot \vec{k}_{3}$ is P-odd and $\vec{k}_{1} \times \vec{k}_{2} \cdot \vec{s}$ is P-even. Absorptive part of QCD amplitudes arises as asymmetry of $\vec{k}_{1} \times \vec{k}_{2} \cdot \vec{s}$.

Early proposals for its observation are
De Rujula, Kaplan \& de Rafael (1971) $e^{-} p_{\text {trans. polarized }} \rightarrow e^{-} p$: measure up and down-ward asymmetry of scattered e^{-}.

De Rujula, Petronzio \& Lautrup (1978) $e_{\text {polarized }}^{-} e^{+} \rightarrow \gamma^{*} \rightarrow($ vector resonance $) \rightarrow g g g:$ measure $\vec{k}_{j 1} \times \vec{k}_{j 2} \cdot \vec{s}_{e^{-}}$. Hagiwara, Hikasa \& Kai (1982)
$\nu+N \rightarrow \ell+$ (hadron) + anything : measure $\vec{k}_{\ell} \times \vec{k}_{\text {hadron }} \cdot \vec{s}_{\nu}$.
These are followed by works on W+jet production in hadron collisions (Hagiwara, Hikasa \& Kai (1984), Hagiwara, Hikasa \& Yokoya (2006)), Z-boson decay (Hagiwara, Kuruma \& Y. Yamada (1991)) and top decay (Hagiwara, Mawatari \& Yokoya (2007)).

Past Observation of T-odd Asymmetry

Bunce et al. (1975)

- T-odd asymmetry has already been observed through transverse polarization of Λ^{0} in $p \mathrm{Be} \rightarrow \Lambda^{0} X$ process, which is given by $\vec{s}_{\perp} \propto \vec{p}_{p} \times \vec{p}_{\Lambda^{0}} \cdot \vec{s}_{\Lambda^{0}}$.

- However, it is difficult to make a theoretical prediction on the transverse polarization of Λ^{0}.

Past Observation of T-odd Asymmetry

Bunce et al. (1975)

- T-odd asymmetry has already been observed through transverse polarization of Λ^{0} in $p \mathrm{Be} \rightarrow \Lambda^{0} X$ process, which is given by $\vec{s}_{\perp} \propto \vec{p}_{p} \times \vec{p}_{\Lambda^{0}} \cdot \vec{s}_{\Lambda^{0}}$.

- However, it is difficult to make a theoretical prediction on the transverse polarization of Λ^{0}.

In this talk, we focus on transverse polarization of W^{+}in $p p \rightarrow W^{+}+$jet process, which can be predicted by perturbative QCD.

T-odd Asymmetry

in $p p \rightarrow W^{+}+$jet Events

T-odd Asymmetry in $W+$ jet events

In this talk, we focus on $p p \rightarrow W^{+}+$jet process at the LHC and study asymmetry of the quantity

$$
\vec{p}_{p 1} \times \vec{p}_{W^{+}}+\vec{s}_{\perp} .
$$

Since W boson is heavy, we may apply perturbative QCD to calculate the scattering amplitude, including its absorptive part. In perturbation theory, absorptive part is calculated by Cutkosky rules.

Observation of

T-odd Asymmetry in $W+$ jet events

The transverse spin of W^{+}, \vec{s}_{\perp}, can be inferred through its decay into leptons $W^{+} \rightarrow \ell^{+} \nu_{\ell}$, thanks to P -violation in weak interaction.

We study the momentum distribution of the charged lepton ℓ^{+}. \vec{s}_{\perp} is correlated with the component of ℓ^{+}momentum perpendicular to the scattering plane.

Differential Cross Section of $p p \rightarrow W^{+}\left(\rightarrow \ell^{+} \nu_{\ell}\right)+$ jet Process

The differential cross section is expressed as (diff. cross section) $\propto \sum_{\lambda, \lambda^{\prime}= \pm, 0} \mathcal{M}_{p p \rightarrow W_{\lambda}+\text { jet }} \mathcal{M}_{W_{\lambda} \rightarrow \ell \nu} \mathcal{M}_{p p \rightarrow W_{\lambda^{\prime}}+\text { jet }}^{*} \mathcal{M}_{W_{\lambda^{\prime}} \rightarrow \ell \nu}^{*}$

$$
=\sum_{\lambda, \lambda^{\prime}= \pm, 0} D_{\lambda \lambda^{\prime}} \rho_{\lambda \lambda^{\prime}} \quad\left(\lambda, \lambda^{\prime}=\mathrm{W} \text { boson polarization }\right)
$$

where $\quad D_{\lambda \lambda^{\prime}} \equiv \mathcal{M}_{p p \rightarrow W_{\lambda}+\mathrm{jet}} \mathcal{M}_{p p \rightarrow W_{\lambda^{\prime}}+\mathrm{jet}}^{*}$, ,$\longleftarrow \begin{aligned} & \text { QCD amplitude } \\ & \text { incl. absorptive part }\end{aligned}$
(θ, ϕ) : solid angle of charged lepton in a W boson rest frame

$$
\begin{aligned}
& \rho_{\lambda \lambda^{\prime}} \equiv \mathcal{M}_{W_{\lambda} \rightarrow \ell \nu} \mathcal{M}_{W_{\lambda^{\prime}} \rightarrow \ell \nu}^{*}
\end{aligned}
$$

Differential Cross Section

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{T}^{2} \mathrm{~d} \cos \hat{\theta} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =F_{1}\left(1+\cos ^{2} \theta\right)+F_{2}\left(1-3 \cos ^{2} \theta\right)+F_{3} \sin 2 \theta \cos \phi \\
& +F_{4} \sin ^{2} \theta \cos 2 \phi+F_{5} \cos \theta+F_{6} \sin \theta \cos \phi \\
& +F_{7} \sin \theta \sin \phi+F_{8} \sin 2 \theta \sin \phi+F_{9} \sin ^{2} \theta \sin 2 \phi .
\end{aligned}
$$

q_{T} : W boson transverse momentum
$\Gamma \hat{\theta}$: scattering angle of W boson in parton center-of-mass frame (θ, ϕ) : solid angle of charged lepton in a W rest frame with $\vec{n}_{y} / / \vec{n}_{z}^{\text {lab }} \times \vec{q}_{T}^{\text {lab }}$
parton center-of-mass frame

\downarrow

F_{i} 's are functions of $q_{T}, \cos \hat{\theta}$, and contain QCD amplitudes and parton distribution functions.

T-odd Part of the Cross Section

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{T}^{2} \mathrm{~d} \cos \hat{\theta} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =F_{1}\left(1+\cos ^{2} \theta\right)+F_{2}\left(1-3 \cos ^{2} \theta\right)+F_{3} \sin 2 \theta \cos \phi \\
& +F_{4} \sin ^{2} \theta \cos 2 \phi+F_{5} \cos \theta+F_{6} \sin \theta \cos \phi \\
& +F_{7} \sin \theta \sin \phi+F_{8} \sin 2 \theta \sin \phi+F_{9} \sin ^{2} \theta \sin 2 \phi .
\end{aligned}
$$

$q_{T}: \mathrm{W}$ boson transverse momentum
$\hat{\theta}$: scattering angle of W boson in parton center-of-mass frame
(θ, ϕ) : solid angle of charged lepton in a W rest frame with $\vec{n}_{y} / / \vec{n}_{z}^{\text {lab }} \times \vec{q}_{T}^{\text {lab }}$
Under naïve-T-reversal, $\hat{\theta} \rightarrow \hat{\theta}, \quad \theta \rightarrow \theta, \phi \rightarrow-\phi$. Hence functions F_{7}, F_{8}, F_{9} represent T-odd contributions to the cross section.

T-odd Part of the Cross Section

$\frac{\mathrm{d} \sigma}{\mathrm{d} q_{T}^{2} \mathrm{~d} \cos \hat{\theta} \mathrm{~d} \cos \theta \mathrm{~d} \phi}=F_{1}\left(1+\cos ^{2} \theta\right)+F_{2}\left(1-3 \cos ^{2} \theta\right)+F_{3} \sin 2 \theta \cos \phi$
Odd under $\quad+F_{4} \sin ^{2} \theta \cos 2 \phi+F_{5} \cos \theta+F_{6} \sin \theta \cos \phi$
naïve-T-reversal $\longrightarrow+F_{7} \sin \theta \sin \phi+F_{8} \sin 2 \theta \sin \phi+F_{9} \sin ^{2} \theta \sin 2 \phi$
q_{T} : W boson transverse momentum
$\hat{\theta}$: scattering angle of W boson in parton center-of-mass frame
(θ, ϕ) : solid angle of charged lepton in a W rest frame with $\vec{n}_{y} / / \vec{n}_{z}^{\text {lab }} \times \vec{q}_{T}^{\text {lab }}$
Under naïve-T-reversal, $\hat{\theta} \rightarrow \hat{\theta}, \theta \rightarrow \theta, \phi \rightarrow-\phi$.
Hence functions F_{7}, F_{8}, F_{9} represent T-odd contributions to the cross section.

Calculation of T-odd Terms

- At the leading order, T-odd terms F_{7}, F_{8}, F_{9} can be calculated by inserting Cutkosky cuts into one-loop diagrams below:

Calculation of T-odd Terms

- At the leading order, T-odd terms F_{7}, F_{8}, F_{9} can be calculated by inserting Cutkosky cuts into one-loop diagrams below:

Calculation of T-odd Terms

- At the leading order, T-odd terms F_{7}, F_{8}, F_{9} can be calculated by inserting Cutkosky cuts into one-loop diagrams below:

Calculation of T-odd Terms

- At the leading order, T-odd terms F_{7}, F_{8}, F_{9} can be calculated by inserting Cutkosky cuts into one-loop diagrams below:

For each cut propagator, replace $\frac{1}{(l+p)^{2}-m^{2}+i \epsilon}$ with $-2 \pi i \delta\left((l+p)^{2}-m^{2}\right)$.

Calculation of T-odd Terms (cont'd)

- Before the calculation, we fix the W boson rest frame where (θ, ϕ) are defined to be Collins-Soper frame:

- Factorize $F_{i}(i=7,8,9)$ as

$$
\begin{aligned}
F_{i}= & \sum_{\text {partons } a, b} \int \mathrm{~d} Y D_{a / p}\left(x_{+}, \mu_{F}\right) D_{b / p}\left(x_{-}, \mu_{F}\right) \frac{3 \operatorname{Br}(W \rightarrow \ell \nu) G_{F} M_{W}^{2}}{4 \sqrt{2 s}\left(\hat{s}+M_{W}^{2}\right) \sin ^{2} \hat{\theta}} f_{i}^{a b \rightarrow W^{+} c}\left(\frac{M_{W}^{2}}{2 q \cdot p_{a}}, \frac{M_{W}^{2}}{2 q \cdot p_{b}}\right) \\
& \text { where } \quad x_{ \pm}=\frac{q_{T}+\sqrt{q_{T}^{2}+M_{W}^{2} \sin ^{2} \hat{\theta}}}{\sqrt{s} \sin \hat{\theta}} e^{ \pm Y} .
\end{aligned}
$$

Calculation of T-odd Terms (cont'd)

For $u g \rightarrow W^{+} d, \bar{d} g \rightarrow W^{+} \bar{u}$ subprocesses,

$$
f_{i}^{\bar{d} g \rightarrow W^{+} \bar{u}}(a, b)=\eta_{i} f_{i}^{u g \rightarrow W^{+} d}(a, b)=-\cos ^{2} \theta_{C} \frac{\alpha_{s}\left(\mu_{R}\right)^{2}}{\pi} \frac{T_{F}}{N_{C}} f_{C i}(a, b)
$$

where

$$
\begin{aligned}
f_{C 7}= & \frac{1-b}{[c(1-c)]^{1 / 2}}\left\{-C_{F}\left[\frac{a(1+a) c}{2 b}-a^{2}\right]\right. \\
& \left.+C_{1}\left[2 b c-a^{2}+(c-b)\left(1+\frac{a}{c} \ln \frac{1}{1-c}+\frac{a}{c-a} \ln \frac{a}{c}\right)\right]\right\} \\
f_{C 8}= & \frac{c-b}{2(1-c)^{1 / 2}}\left\{-C_{F}\left(\frac{a}{b}-\frac{1+a}{2}\right)+C_{1}\left[b-1+\frac{a}{c}\left(b+\frac{c-b}{c} \ln \frac{1}{1-c}\right)\right]\right\} \\
f_{C 9}= & \frac{c-b}{2 c^{1 / 2}}\left\{-C_{F}\left(\frac{a}{2 b}+\frac{1+a}{2}\right)+C_{1}\left[b+\frac{a}{c} \ln \frac{1}{1-c}-\frac{1}{1-a}\left(1+\frac{a}{c-a} \ln \frac{a}{c}\right)\right]\right\}
\end{aligned}
$$

For $u \bar{d} \rightarrow W^{+} g$ subprocess,

$$
f_{i}^{\bar{d} u \rightarrow W^{+} g}(a, b)=\eta_{i} f_{i}^{u \bar{d} \rightarrow W^{+} g}(a, b)=-\cos ^{2} \theta_{C} \frac{\alpha_{s}\left(\mu_{R}\right)^{2}}{\pi} \frac{C_{F}}{N_{C}} f_{A i}(a, b)
$$

where

$$
\begin{aligned}
& f_{A 7}=\left(\frac{c}{1-c}\right)^{1 / 2}\left\{-C_{F} \frac{a(1+c)}{2 b}+C_{1}\left[a+\frac{c}{c-a} \ln \frac{a}{c}\right]\right\}-(a \leftrightarrow b) \\
& f_{A 8}=\frac{c}{2(1-c)^{1 / 2}}\left\{-C_{F} \frac{a}{b}+C_{1} \frac{1}{1-a} \ln \frac{a}{c}\right\}-(a \mapsto b), \\
& f_{A 9}=\frac{c^{1 / 2}}{2}\left\{-C_{F} \frac{a}{2 b}-C_{1} \frac{1}{1-a}\left[1-\frac{c}{c-a} \ln \frac{a}{c}\right]\right\}+(a \leftrightarrow b)
\end{aligned}
$$

Calculation of T-odd Terms (contd)

For $u g \rightarrow W^{+} d, \bar{d} g \rightarrow W^{+} \bar{u}$ subprocesses,

$$
f_{i}^{\bar{d} g \rightarrow W^{+} \bar{u}}(a, b)=\eta_{i} f_{i}^{u g \rightarrow W^{+} d}(a, b)=-\cos ^{2} \theta_{C} \frac{\alpha_{s}\left(\mu_{R}\right)^{2}}{\pi} \frac{T_{F}}{N_{C}} f_{C i}(a, b)
$$

where

$$
\begin{aligned}
f_{C 7}= & \frac{1-b}{[c(1-c)]^{1 / 2}}\left\{-C_{F}\left[\frac{a(1+a) c}{2 b}-a^{2}\right]\right. \\
& \left.\quad+C_{1}\left[2 b c-a^{2}+(c-b)\left(1+\frac{a}{c} \ln \frac{1}{1-c}+\frac{a}{c-a} \ln \frac{a}{c}\right)\right]\right\}, \\
f_{C 8}= & \frac{c-b}{2(1-c)^{1 / 2}}\left\{-C_{F}\left(\frac{a}{b}-\frac{1+a}{2}\right)+C_{1}\left[b-1+\frac{a}{c}\left(b+\frac{c-b}{c} \ln \frac{1}{1-c}\right)\right]\right\}, \\
f_{C 9}= & \frac{c-b}{2 c^{1 / 2}}\left\{-C_{F}\left(\frac{a}{2 b}+\frac{1+a}{2}\right)+C_{1}\left[b+\frac{a}{c} \ln \frac{1}{1-c}-\frac{1}{1-a}\left(1+\frac{a}{c-a} \ln \frac{a}{c}\right)\right]\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& c \equiv a+b-a b . \\
& \eta_{7}=1 \\
& \eta_{8}=\eta_{9}=-1 . \\
& C_{1}=C_{F}-C_{A} / 2 .
\end{aligned}
$$

For $u \bar{d} \rightarrow W^{+} g$ subprocess,

$$
f_{i}^{\bar{d} u \rightarrow W^{+} g}(a, b)=\eta_{i} f_{i}^{u \bar{d} \rightarrow W^{+} g}(a, b)=-\cos ^{2} \theta_{C} \frac{\alpha_{s}\left(\mu_{R}\right)^{2}}{\pi} \frac{C_{F}}{N_{q}} f_{A i}(a, b)
$$

where

$$
\begin{aligned}
& f_{A 7}=\left\{\left.\frac{c}{1-c}\right|^{1 / 2}\left\{-C_{F} \frac{a(1+c)}{2 b}+C_{1}\left[a+\frac{c}{c-a} \ln \frac{a}{c}\right]\right\}-(a \mapsto b)\right. \\
& f_{A 8}=\frac{c}{2(1-c)^{1 / 2}}\left\{-C_{F} \frac{a}{b}+C_{1} \frac{1}{1-a} \ln \frac{a}{c}\right\}-(a \mapsto b), \\
& f_{A 9}=\frac{c^{1 / 2}}{2}\left\{-C_{F} \frac{a}{2 b}-C_{1} \frac{1}{1-a}\left[1-\frac{c}{c-a} \ln \frac{a}{c}\right]\right\}+(a \mapsto b)
\end{aligned}
$$

Tod terms appear at α_{s}^{2}.

Calculation of T-odd Terms (cont'd)

We plot the ratio $A_{i} \equiv F_{i} / F_{1} \quad(i=7,8,9)$.
(total cross section is proportional to F_{1})
In $p p$ collisions with $\sqrt{s}=8 \mathrm{TeV}$,

$$
A_{i}\left(q_{T}, \cos \hat{\theta}\right)
$$

are evaluated as:
Fac. \& ren. scales are set at $\mu_{F}=\mu_{R}=q_{T}$.

Yokoya (2013)

Calculation of T-odd Terms (cont'd)

We plot the ratio $A_{i} \equiv F_{i} / F_{1} \quad(i=7,8,9)$.
(total cross section is proportional to F_{1})
In $p p$ collisions with $\sqrt{s}=8 \mathrm{TeV}$,

$$
A_{i}\left(q_{T}, \cos \hat{\theta}\right)
$$

are evaluated as:
Fac. \& ren. scales are set at $\mu_{F}=\mu_{R}=q_{T}$.
(A)symmetry of A_{i} 's in terms of $\cos \hat{\theta}$ results from rotational invariance of S-matrix.

Calculation of T-odd Terms (cont'd)

We plot the ratio $A_{i} \equiv F_{i} / F_{1} \quad(i=7,8,9)$.
(total cross section is proportional to F_{1})
In $p p$ collisions
with $\sqrt{s}=8 \mathrm{TeV}$,
$A_{i}\left(q_{T}, \cos \hat{\theta}\right)$
are evaluated as:
Fac. \& ren. scales are set at $\mu_{F}=\mu_{R}=q_{T}$.
(A)symmetry of A_{i} 's in terms of $\cos \hat{\theta}$ results from rotational invariance of S-matrix.

Calculation of T-odd Terms (cont'd)

We plot the ratio $A_{i} \equiv F_{i} / F_{1} \quad(i=7,8,9)$.
(total cross section is proportional to F_{1})
In $p p$ collisions with $\sqrt{s}=8 \mathrm{TeV}$, $A_{i}\left(q_{T}, \cos \hat{\theta}\right)$ are evaluated as: Fac. \& ren. scales are set at $\mu_{F}=\mu_{R}=q_{T}$.
(A)symmetry of A_{i} 's in terms of $\cos \hat{\theta}$ results from rotational invariance of S-matrix.

T-odd Observable at Hadron Colliders

We look for a quantity that is sensitive to $F_{7} \sin \theta \sin \phi$ term. When y-axis is defined parallel to $\vec{n}_{z}^{\text {lab }} \times \vec{q}_{T}^{\text {lab }}$, the y-component of the charged lepton momentum, $\left(\vec{q}_{l}\right)_{y}$, satisfies

$$
\sin \theta \sin \phi=\left(\overrightarrow{q_{l}}\right)_{y} /\left(M_{W} / 2\right)
$$

Lab. frame

Measure the difference in the numbers of events with $\left(\overrightarrow{q_{l}}\right)_{y}>0$ and $\left(\vec{q}_{l}\right)_{y}<0$, and define T -odd asymmetry A as $A \equiv \frac{\sigma\left(\text { events with }\left(\vec{q}_{l}\right)_{y}>0\right)-\sigma\left(\text { events with }\left(\vec{q}_{l}\right)_{y}<0\right)}{\sigma\left(\text { events with }\left(\vec{q}_{l}\right)_{y}>0\right)+\sigma\left(\text { events with }\left(\vec{q}_{l}\right)_{y}<0\right)}$.
A reflects $F_{7} \sin \theta \sin \phi$ term's contribution.

Problem of the Sign of $\cos \hat{\theta}$

F_{7} term flips sign with cosine of the scattering angle in parton center-of-mass frame $\cos \hat{\theta}$. Hence we need to separate events with $\cos \hat{\theta}>0$ and $\cos \hat{\theta}<0$.
In hadron collisions, $\cos \hat{\theta}$ is reconstructed by calculating ν_{l} 's longitudinal momentum, but this gives one positive and one negative solutions for $\cos \hat{\theta}$.

Instead, we use $\eta_{\ell^{+}}-\eta_{j}$, which is correlated with $\cos \hat{\theta}$.

We study the distribution of the asymmetry A in each bin of the pseudo-rapidity difference $\eta_{l^{+}}-\eta_{j}$.

Simulations for the 8 TeV LHC

Parton-level Analysis

Functions $F_{i}\left(q_{T}, \cos \hat{\theta}\right)(i=1,2, \ldots, 9)$ in the leading order have been calculated by perturbative QCD in Collins-Soper frame in refs. M.Chaichian et al. (1982), Hagiwara, Hikasa \& Kai (1984) .
(F_{7}, F_{8}, F_{9} at one-loop level, the others at tree level)

Integrating the analytic formulas in the references above, we evaluate the differential cross section at $\mathbf{8 ~ T e V ~ L H C . ~} \square$ Parton-level analysis

In the following analysis, CTEQ6M parton distribution function is used, and the renormalization and factorization scales are set
at $\quad \mu_{R}=\mu_{F}=q_{T}$.

Parton-level Analysis (cont’d)

The selection cuts are
$\left[\right.$: The leading jet(=parton) should satisfy $p_{j_{1} T}>30 \mathrm{GeV}$ \& $\left|\eta_{j_{1}}\right|<4.4$.

- Require one μ^{+}with $p_{\mu^{+} T}>25 \mathrm{GeV}$ \& $\left|\eta_{\mu^{+}}\right|<2.4$.
- Require $p_{T}>25 \mathrm{GeV}$.
- The transverse momentum of W boson, $q_{T} \equiv\left|\vec{p}_{\mu T}+\vec{p}_{T}\right|$, should satisfy $q_{T}>30 \mathrm{GeV}$.
" The transverse mass, $\quad M_{T} \equiv \sqrt{2\left(\left|\vec{p}_{\mu T}\right|\left|\vec{p}_{T}\right|-\vec{p}_{\mu T} \cdot \vec{p}_{T}\right) \text {, should }}$ satisfy $M_{T}>60 \mathrm{GeV}$.
defining $p p \rightarrow W^{+}\left(\mu^{+} \nu_{\mu}\right)+$ jet events.
* Require $\left|\left(\vec{q}_{l}\right)_{y}\right| /\left(M_{W} / 2\right)>0.6$.
to reduce the impact of uncertainty of $\left|\left(\vec{q}_{l}\right)_{y}\right|$.
For each event, $\left(\vec{q}_{l}\right)_{y}$ is reconstructed as:

$$
\begin{aligned}
& \left|\left(\vec{q}_{l}\right)_{y}\right|=\left|\vec{p}_{\mu T}-\vec{q}_{T} \frac{\vec{q}_{T} \cdot \vec{p}_{\mu T}}{\left|\vec{q}_{T}\right|^{2}}\right| \longleftarrow \vec{q}_{T} \equiv \vec{p}_{\mu T}+\vec{p}_{T} \\
& \operatorname{sgn}\left(\left(\vec{q}_{l}\right)_{y}\right)=-\operatorname{sgn}\left(\vec{p}_{\mu T} \times \vec{p}_{T} \cdot \vec{n}_{z}^{\mathrm{lab}}\right)
\end{aligned}
$$

Result of Parton-level Analysis

The cross section asymmetry

$$
A \equiv \frac{\sigma\left(\text { events with }\left(\overrightarrow{q_{l}}\right)_{y}>0\right)-\sigma\left(\text { events with }\left(\overrightarrow{q_{l}}\right)_{y}<0\right)}{\sigma\left(\text { events with }\left(\vec{q}_{l}\right)_{y}>0\right)+\sigma\left(\text { events with }\left(\vec{q}_{l}\right)_{y}<0\right)}
$$

in each bin of $\eta_{\mu^{+}}-\eta_{j}$ is as below.

Detector-level Analysis

- Since T-odd terms appear at one-loop level, we need a Monte Carlo event generator based on one-loop level calculation of matrix elements, to do a detector-level Monte Carlo simulation.
Such an event generator is made available recently, which is called

"MadGraph5_aMC@NLO" J. Alwall et al. (2014)

- We use "MadGraph5_aMC@NLO" to generate $p p \rightarrow W^{+}\left(\rightarrow \mu^{+} \nu_{\mu}\right)+1$ jet events with $\sqrt{s}=8 \mathrm{TeV}$,
G. Corcella et al. (2010)
"HERWIG6" to simulate parton showering and hadronization,
J. Conway et al. (2012)
and "PGS4" to simulate detector responses and jet clustering. Jet clustering is done with $A n t i-k_{T}$ algorithm with $\Delta R=0.4$.
- The same cuts as in parton-level analysis are applied to select event.

Scale Uncertainty

- We estimate the uncertainty of theoretical predictions due to the scale choice by varying the renormalization and factorization scales as $q_{T} / 2<\mu_{R}=\mu_{F}<2 q_{T}$.
- Also, we use another Monte Carlo simulator, "LOMC", which calculates the matrix elements at the leading order, for comparison.
"LOMC":
T-even terms (that appear at tree level) are calculated at tree level.
T-odd terms (that appear at one-loop) are calculated at one-loop.
"MadGraph5_aMC@NLO":
Both T-even and T-odd terms are calculated at one-loop.

Result of Detector-level Analysis

- Asymmetry can be as large as 5% even at detector-level.
- Scale uncertainty is under control with MadGraph5_aMC@NLO.
- Background from $p p \rightarrow W^{+}\left(\tau^{+} \nu\right)+$ jet, $\tau^{+} \rightarrow \mu^{+} \nu$ events affects the asymmetry by up to 2%.

Result of Detector-level Analysis

With $20 \mathrm{fb}^{-1}$ of data, the statistical error of the asymmetry A, $\delta A=\sqrt{\left(1-A^{2}\right) / N_{\mathrm{evt}}}$, is $0.11 \%, 0.15 \%, 0.25 \%, 0.45 \%$ for $\left|\eta_{l^{+}}-\eta_{j}\right|$ bins of $[0,1],[1,2],[2,3],[3,4]$.

Summary

- Absorptive part of a scattering amplitude can be measured through T-odd asymmetry of the cross section.
- We have focused on $p p \rightarrow W^{+}+$jet process, where the absorptive part is calculable with perturbative QCD, and study the asymmetry of $\vec{p}_{p 1} \times \vec{p}_{W^{+}} \cdot \vec{s}_{\perp}$.
- We have done detector-level Monte Carlo simulations of $p p \rightarrow W^{+}\left(\mu^{+}, \nu_{\mu}\right)+$ jet process for 8 TeV LHC, and shown that T-odd asymmetry is observable with negligible statistical error with $20 \mathrm{fb}^{-1}$ of data.

