T-odd Asymmetry in W + jet events at the LHC

National Central University Toshifumi Yamada

in collaboration with

R. Frederix (*CERN*), K. Hagiwara (*KEK*) and H. Yokoya (*Toyama*) Phys. Rev. Lett. 113, 152001 (2014) [arXiv:1407.1016 [hep-ph]]

1

Contents

- 1. Introduction
- 2. T-odd asymmetry in $pp \rightarrow W^+ + jet$ events
- 3. Simulations for the 8 TeV LHC
- 4. Summary

Introduction

Absorptive Part of Scattering Amplitude

We study **theoretical calculation** & **direct measurement** of the **absorptive part** of a QCD amplitude.

Transition operator \hat{T} is given as $\hat{S} = T \left[e^{-i \int d^4 x \hat{\mathcal{H}}_{int}} \right] = \hat{1} + i \hat{T}$. Unitarity of S-matrix $\hat{S}^{\dagger} \hat{S} = \hat{1}$ gives $-i(\hat{T} - \hat{T}^{\dagger}) = \hat{T}^{\dagger} \hat{T}$.

Absorptive part of transition amplitude from state " i " to state " f " is defined as

$$-i\langle f|(\hat{T} - \hat{T}^{\dagger})|i\rangle = \langle f|\hat{T}^{\dagger}\hat{T}|i\rangle = \sum_{k\in\mathcal{H}}\langle f|\hat{T}^{\dagger}|k\rangle\langle k|\hat{T}|i\rangle \equiv A_{fi}$$

c.f. When the initial and final states are the same, we get the optical theorem:

$$A_{ii} = \operatorname{Im}\left(\langle i|\hat{T}|i\rangle\right) = \sum_{k\in\mathcal{H}} |\langle k|\hat{T}|i\rangle|^2 \propto \sigma_{\text{tot}}$$

Measurement of Absorptive Part

Absorptive part can be measured through part of the cross section that is odd under naïve T-reversal, which we call "T-odd asymmetry".

any 3-momentum $\vec{k} \rightarrow -\vec{k}$, any spin $\sigma \rightarrow -\sigma$, but unlike true T-reversal, the initial and final states are not interchanged: $\langle \vec{p'}_j, \vec{\sigma'}_j | \hat{S} | \vec{p}_i, \vec{\sigma}_i \rangle \implies \langle -\vec{p'}_j, -\vec{\sigma'}_j | \hat{S} | -\vec{p}_i, -\vec{\sigma}_i \rangle$ free particle states

proof:

We denote the naïve-T-reversal of states \hat{i} , \hat{f} by \tilde{i} , \tilde{f} , respectively. We find $|\langle \tilde{f} | \hat{T} | \tilde{i} \rangle|^2 - |\langle f | \hat{T} | i \rangle|^2 \leftarrow \text{T-odd asymmetry}$ $= \left(|\langle \tilde{f} | \hat{T} | \tilde{i} \rangle|^2 - |\langle i | \hat{T} | f \rangle|^2 \right) + 2 \operatorname{Im} \left(\langle f | \hat{T} | i \rangle^* A_{fi} \right) + |A_{fi}|^2$ Absorptive part

Measurement of Absorptive Part

Absorptive part can be measured through part of the cross section that is odd under naïve T-reversal, which we call "T-odd asymmetry".

any 3-momentum $\vec{k} \rightarrow -\vec{k}$, any spin $\sigma \rightarrow -\sigma$, but unlike true T-reversal, the initial and final states are not interchanged: $\langle \vec{p'}_j, \vec{\sigma'}_j | \hat{S} | \vec{p}_i, \vec{\sigma}_i \rangle \longrightarrow \langle -\vec{p'}_j, -\vec{\sigma'}_j | \hat{S} | -\vec{p}_i, -\vec{\sigma}_i \rangle$ free particle states

proof:

We denote the naïve-T-reversal of states i, f by \tilde{i} , \tilde{f} , respectively. We find $|\langle \tilde{f} | \hat{T} | \tilde{i} \rangle|^2 - |\langle f | \hat{T} | i \rangle|^2 \leftarrow \text{T-odd asymmetry}$ $= \underbrace{(|\langle \tilde{f} | T | \tilde{i} \rangle|^2 - |\langle f | \hat{T} | i \rangle|^2}_{\text{Absorptive part}} + 2 \operatorname{Im} \left(\langle f | \hat{T} | i \rangle^* A_{fi} \right) + |A_{fi}|^2$ In QCD with $\Theta = 0$, the first term is zero, but the second and third terms are significant as hadrons/partons have much chance of rescattering,

due to the strongly-coupled nature of QCD.

Observation of T-odd Asymmetry

T-odd asymmetry can be observed through distribution of a quantity that is odd under naïve-T-reversal, such as \vec{l}_{e} : 3-momentum

$$\vec{k}_1 \times \vec{k}_2 \cdot \vec{k}_3$$
 , $\vec{k}_1 \times \vec{k}_2 \cdot \vec{s}$.

 \vec{k}_i : 3-momentum \vec{s} : spin vector

 $\vec{k}_1 \times \vec{k}_2 \cdot \vec{k}_3$ is P-odd and $\vec{k}_1 \times \vec{k}_2 \cdot \vec{s}$ is P-even. Absorptive part of QCD amplitudes arises as asymmetry of $\vec{k}_1 \times \vec{k}_2 \cdot \vec{s}$.

These are followed by works on W+jet production in hadron collisions
(Hagiwara, Hikasa & Kai (1984), Hagiwara, Hikasa & Yokoya (2006)), Z-boson decay
(Hagiwara, Kuruma & Y. Yamada (1991)) and top decay (Hagiwara, Mawatari & Yokoya (2007)).

Past Observation of T-odd Asymmetry

• T-odd asymmetry has already been observed through transverse polarization of Λ^0 in $p \operatorname{Be} \to \Lambda^0 X$ process, which is given by $\vec{s}_{\perp} \propto \vec{p}_p \times \vec{p}_{\Lambda^0} \cdot \vec{s}_{\Lambda^0}$.

- However, it is difficult to make a theoretical prediction on the transverse polarization of $\,\Lambda^0$.

Past Observation of T-odd Asymmetry

• T-odd asymmetry has already been observed through transverse polarization of Λ^0 in $p \operatorname{Be} \to \Lambda^0 X$ process, which is given by $\vec{s}_{\perp} \propto \vec{p}_p \times \vec{p}_{\Lambda^0} \cdot \vec{s}_{\Lambda^0}$.

- However, it is difficult to make a theoretical prediction on the transverse polarization of $\,\Lambda^0$.

In this talk, we focus on transverse polarization of W^+ in $pp \rightarrow W^+ + \text{jet}$ process, which can be predicted by perturbative QCD.

T-odd Asymmetry in $pp \rightarrow W^+ + \text{jet}$ **Events**

Since W boson is heavy, we may apply **perturbative QCD** to calculate the scattering amplitude, including its absorptive part.

In perturbation theory, absorptive part is calculated by Cutkosky rules.

Observation of T-odd Asymmetry in W + jet events

The transverse spin of W^+ , \vec{s}_{\perp} , can be inferred through its decay into leptons $W^+ \to \ell^+ \nu_{\ell}$, thanks to P-violation in weak interaction.

We study the momentum distribution of the charged lepton ℓ^+ . \vec{s}_{\perp} is correlated with the component of ℓ^+ momentum perpendicular to the scattering plane.

Differential Cross Section of $p p \rightarrow W^+(\rightarrow \ell^+ \nu_\ell) + \text{jet Process}$

The differential cross section is expressed as

(diff. cross section)
$$\propto \sum_{\lambda,\lambda'=\pm,0} \mathcal{M}_{pp \to W_{\lambda} + \text{jet}} \mathcal{M}_{W_{\lambda} \to \ell\nu} \mathcal{M}_{pp \to W_{\lambda'} + \text{jet}}^* \mathcal{M}_{W_{\lambda'} \to \ell\nu}^*$$

= $\sum_{\lambda,\lambda'=\pm,0} D_{\lambda\lambda'} \rho_{\lambda\lambda'}$ (λ, λ' = W boson polarization)

where
$$D_{\lambda\lambda'} \equiv \mathcal{M}_{pp \to W_{\lambda} + \text{jet}} \mathcal{M}^*_{pp \to W_{\lambda'} + \text{jet}}$$
, QCD amplitude
incl. absorptive part

T-odd Part of the Cross Section

 $\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2\mathrm{d}\cos\hat{\theta}\mathrm{d}\cos\theta\mathrm{d}\phi} = F_1(1+\cos^2\theta) + F_2(1-3\cos^2\theta) + F_3\sin2\theta\cos\phi$

 $+ F_4 \sin^2 \theta \cos 2\phi + F_5 \cos \theta + F_6 \sin \theta \cos \phi$

 $+ F_7 \sin \theta \sin \phi + F_8 \sin 2\theta \sin \phi + F_9 \sin^2 \theta \sin 2\phi$.

- q_T : W boson transverse momentum
- $\hat{\theta}$: scattering angle of W boson in parton center-of-mass frame
- $(heta,\phi)$: solid angle of charged lepton in a W rest frame with $\,ec{n_y}\,//\,ec{n_z^{
 m lab}} imesec{q_T^{
 m lab}}$
- Under naïve-T-reversal, $\hat{\theta} \rightarrow \hat{\theta}$, $\theta \rightarrow \theta$, $\phi \rightarrow -\phi$. Hence functions F_7 , F_8 , F_9 represent T-odd contributions to the cross section.

Under naïve-T-reversal, $\hat{\theta} \rightarrow \hat{\theta}$, $\theta \rightarrow \theta$, $\phi \rightarrow -\phi$. Hence functions F_7 , F_8 , F_9 represent T-odd contributions to the cross section.

• Before the calculation, we fix the W boson rest frame where (θ, ϕ) are defined to be Collins-Soper frame:

• Factorize
$$F_i$$
 ($i = 7, 8, 9$) as

$$F_i = \sum_{\text{partons } a, b} \int dY D_{a/p}(x_+, \mu_F) D_{b/p}(x_-, \mu_F) \frac{3\text{Br}(W \to \ell\nu)G_F M_W^2}{4\sqrt{2}s(\hat{s} + M_W^2)\sin^2\hat{\theta}} f_i^{ab \to W^+c} \left(\frac{M_W^2}{2q \cdot p_a}, \frac{M_W^2}{2q \cdot p_b}\right)$$
where $x_{\pm} = \frac{q_T + \sqrt{q_T^2 + M_W^2 \sin^2\hat{\theta}}}{\sqrt{s}\sin\hat{\theta}} e^{\pm Y}$.

 $\begin{array}{l} q & : \mbox{W} \mbox{ boson momentum} \\ q_T & : \mbox{W} \mbox{ boson transverse momentum} \end{array}$

nartan

We plot the ratio $A_i \equiv F_i/F_1$ (i=7,8,9) .

(total cross section is proportional to ${\it F}_1$)

- We plot the ratio $\ A_i \ \equiv \ F_i/F_1 \ (i=7,8,9)$.
- (total cross section is proportional to ${\it F}_1$)

- We plot the ratio $\ A_i \ \equiv \ F_i/F_1 \ (i=7,8,9)$.
- (total cross section is proportional to ${\it F}_1$)

- We plot the ratio $\ A_i \ \equiv \ F_i/F_1 \ (i=7,8,9)$.
- (total cross section is proportional to $\,F_1$)
- In pp collisions with $\sqrt{s} = 8 \text{ TeV}$, $A_i(q_T, \cos \hat{\theta})$ are evaluated as: Fac. & ren. scales are set at $\mu_F = \mu_R = q_T$.
- (A)symmetry of A_i 's in terms of $\cos \hat{\theta}$ results from rotational invariance of S-matrix.

T-odd Observable at Hadron Colliders

We look for a quantity that is sensitive to $F_7 \sin \theta \sin \phi$ term.

When \mathcal{Y} -axis is defined parallel to $\vec{n}_z^{
m lab} imes \vec{q}_T^{
m lab}$, the \mathcal{Y} -component of the charged lepton momentum, $(\vec{q_l})_y$, satisfies

28

A

Problem of the Sign of $\cos \hat{\theta}$

 F_7 term **flips sign** with cosine of the scattering angle in parton center-of-mass frame $\cos \hat{\theta}$. Hence we need to separate events with $\cos \hat{\theta} > 0$ and $\cos \hat{\theta} < 0$.

In hadron collisions, $\cos \hat{\theta}$ is reconstructed by calculating ν_l 's longitudinal momentum, but this gives one positive and one negative solutions for $\cos \hat{\theta}$.

rotation

 \mathcal{U}

u

Instead, we use $\eta_{\ell^+} - \eta_j$, which is correlated with $\cos \hat{\theta}$.

We study the distribution of the asymmetry A in each bin of the pseudo-rapidity difference $\,\eta_{l^+}-\eta_j$.

Simulations for the 8 TeV LHC

Parton-level Analysis

Functions $F_i(q_T, \cos \hat{\theta})$ (i = 1, 2, ..., 9) in the leading order have been calculated by perturbative QCD in Collins-Soper frame in refs. M.Chaichian *et al.* (1982), Hagiwara, Hikasa & Kai (1984). (F_7, F_8, F_9 at one-loop level, the others at tree level)

Integrating the analytic formulas in the references above, we evaluate the differential cross section at **8 TeV LHC**. Parton-level analysis

In the following analysis, CTEQ6M parton distribution function is used, and the renormalization and factorization scales are set

at $\mu_R=\mu_F=q_T$.

Parton-level Analysis (cont'd)

The selection cuts are

- The leading jet(=parton) should satisfy $p_{j_1T} > 30 \text{ GeV} \& |\eta_{j_1}| < 4.4$.
- Require one μ^+ with $p_{\mu^+T} > 25 \text{ GeV}$ & $|\eta_{\mu^+}| < 2.4$.
- Require $p_T > 25 \text{ GeV}$.
- The transverse momentum of W boson, $q_T \equiv |\vec{p}_{\mu T} + \not{p}_T|$, should satisfy $q_T > 30 \ {
 m GeV}$.
- The transverse mass, $M_T \equiv \sqrt{2(|\vec{p}_{\mu T}| |\vec{p}_T| \vec{p}_{\mu T} \cdot \vec{p}_T)}$, should satisfy M_T > 60 GeV·

defining $pp \rightarrow W^+(\mu^+\nu_\mu) + \text{jet}$ events.

• Require $|(\vec{q}_l)_y| / (M_W/2) > 0.6$. to reduce the impact of uncertainty of $|(\vec{q_l})_y|$.

For each event, $(\vec{q_l})_y$ is reconstructed as:

32

Result of Parton-level Analysis

The cross section asymmetry

$$A \equiv \frac{\sigma(\text{events with } (\vec{q_l})_y > 0) - \sigma(\text{events with } (\vec{q_l})_y < 0)}{\sigma(\text{events with } (\vec{q_l})_y > 0) + \sigma(\text{events with } (\vec{q_l})_y < 0)}$$

in each bin of $\eta_{\mu^+} - \eta_j$ is as below.

Detector-level Analysis

- Since T-odd terms appear at one-loop level, we need a Monte Carlo event generator based on one-loop level calculation of matrix elements, to do a detector-level Monte Carlo simulation.
 Such an event generator is made available recently, which is called "MadGraph5_aMC@NLO".
- We use "MadGraph5_aMC@NLO" to generate $p p \rightarrow W^+(\rightarrow \mu^+ \nu_{\mu}) + 1$ jet events with $\sqrt{s} = 8$ TeV, G. Corcella *et al.* (2010) "HERWIG6" to simulate parton showering and hadronization, J. Conway *et al.* (2012) and "PGS4" to simulate detector responses and jet clustering. Jet clustering is done with Anti- k_T algorithm with $\Delta R = 0.4$.
- The same cuts as in parton-level analysis are applied to select event.

Scale Uncertainty

- We estimate the uncertainty of theoretical predictions due to the scale choice by varying the renormalization and factorization scales as $q_T/2 < \mu_R = \mu_F < 2q_T$.
- Also, we use another Monte Carlo simulator, "LOMC", which calculates the matrix elements at the leading order, for comparison.

"LOMC":

T-even terms (that appear at tree level) are calculated at tree level. T-odd terms (that appear at one-loop) are calculated at one-loop.

"MadGraph5_aMC@NLO":

Both T-even and T-odd terms are calculated at one-loop.

- Asymmetry can be as large as 5 % even at detector-level.
- Scale uncertainty is under control with MadGraph5_aMC@NLO.
- Background from $pp \rightarrow W^+(\tau^+ \nu) + \text{jet}$, $\tau^+ \rightarrow \mu^+ \nu$ events affects the asymmetry by up to 2%.

With 20 fb⁻¹ of data, the statistical error of the asymmetry A, $\delta A = \sqrt{(1 - A^2)/N_{\text{evt}}}$, is 0.11 %, 0.15 %, 0.25 %, 0.45% for $|\eta_{l^+} - \eta_j|$ bins of [0,1], [1,2], [2,3], [3,4].

Summary

- Absorptive part of a scattering amplitude can be measured through T-odd asymmetry of the cross section.
- We have focused on $p p \rightarrow W^+ + jet$ process, where the absorptive part is calculable with perturbative QCD, and study the asymmetry of $\vec{p}_{p1} \times \vec{p}_{W^+} \cdot \vec{s}_{\perp}$.
- We have done detector-level Monte Carlo simulations of $p p \rightarrow W^+(\mu^+, \nu_\mu) + \text{jet}\, \text{ process for 8 TeV LHC},$ and shown that T-odd asymmetry is observable with negligible statistical error with 20 fb^{-1} of data.